Quantum Enigma: Physics Encounters Consciousness Bruce Rosenblum Fred Kuttner Oxford Univ Press 2006 p. 6 Suppose that when formulation beyond FAPP is attempted, we find an unmovable finger obstinately pointing outside the subject, to the mind of the observer, to the Hindu scriptures, to God, or even only Gravitation? Would that not be very, very interesting? —John Bell p.9 Quantum theory is not just one of many theories in physics. It is the framework upon which all of today’s physics is ultimately based. p. 14 Though what you’re saying is correct, presenting this material to nonscientists is the intellectual equivalent of allowing children to play with loaded guns. — A colleague’s objection to our physics course, “The Quantum Enigma” p. 14 This is a controversial book. But nothing we say about quantum mechanics is controversial. The experimental results we report and our explanation of them with quantum theory are completely undisputed. It is the mystery these results imply beyond physics that is hotly disputed. For many physicists, this mystery, the quantum enigma, is best not talked about. It displays physics’ encounter with consciousness. It’s the skeleton in our closet. p. 15 That physics has encountered consciousness cannot be denied. The continuing discussion by physicists of the connection of consciousness with quantum mechanics displays that encounter. p. 24 The quantum enigma has challenged physicists for eight decades. Is it possible that crucial clues lie outside the expertise of physicists? Remarkably, the enigma can be presented essentially full-blown to nonscientists. Might someone unencumbered by years of training in the use of quantum theory have a new insight? After all, it was a child who pointed out that the emperor wore no clothes. p. 43 Though aspects of Newton’s legacy will forever endure, the Newtonian mechanistic worldview, the bedrock of what we today call “classical physics,” is challenged by modern physics. Nevertheless, this bedrock, our Newtonian heritage, still molds our commonsense view of the physical world and shapes our thinking in every intellectual sphere. We now focus on five “commonsense” Newtonian stances, because we will soon show how quantum mechanics challenges each of them. p. 44 A more profound challenge will be the intrusion of the conscious observer into the actual quantum experiment. No longer can the issue of free will be simply ruled out of physics by limiting the scope of the theory. It arises in the experimental demonstration. With quantum mechanics, the paradox of free will is no longer benign. p. 47 with quantum mechanics, where the challenge is to explain observations that force us to deny straightforward physical reality. p. 50 And we will briefly tell of Einstein’s theory of relativity — its well-confirmed but hard-tobelieve predictions are good psychological practice for the “impossible-to-believe” implications of quantum theory. p. 52 Classical physics explains the world quite well; it’s just the details it can’t handle. Quantum physics handles the details perfectly; it’s just the world it can’t explain. Quantum physics does not replace classical physics the way the sun-centered solar system replaced the earlier view with Earth as the cosmic center. Rather, quantum physics encompasses classical physics as a special case. Classical physics is usually an extremely good approximation for behavior of objects that are much larger than atoms. But if you dig deeply enough into any natural phenomenon — physical, chemical, biological, or cosmological — you hit quantum mechanics. Quantum theory has been subject to challenging tests for eight decades. No prediction by the theory has ever been shown wrong. It is the most battle-tested theory in all of science — it has no competitors. Nevertheless, if you take the implications of the theory seriously, you confront an enigma. The theory seems to tell us that the reality of the physical world depends on our observation of it. This is surely almost impossible to believe p. 52 Niels Bohr, a founder of quantum theory, claimed that unless you’re shocked by quantum mechanics, you have not understood it. p.53 In the final week of the nineteenth century, Max Planck suggested something outrageous — that the most fundamental laws of physics were violated. This was the first hint of the quantum revolution, that the worldview we now call “classical” had to be abandoned. p.59 Albert Einstein took a different tack and cut the Gordian knot. He postulated the observed fact: that the speed of light is the same no matter how fast the observer moves. He took it as a new law of Nature. ... The prediction that is hardest to believe is that the passage of time is relative: Time passes more slowly for a fast-moving object than it does for something at rest. p. 61 Though the paradoxical nature of light disturbed Einstein, he clung to his photon hypothesis. He declared that a mystery existed in Nature and that we must confront it. He did not pretend to resolve the problem. And we do not pretend to resolve it here in this book. The mystery is still with us a hundred years later. The implications of our being able to choose to prove either of two contradictory things extend beyond physics. It’s the quantum enigma. We will see far-out speculations being seriously proposed. p. 62 The universe begins to look more like a great thought than a great machine. — Sir James Jeans p. 63 The experimental facts we describe and quantum theory explanations we offer are standard and undisputed. We step beyond that firm ground when we explore the interpretation of the theory and thus physics’ encounter with consciousness. The deeper meaning of quantum mechanics is in dispute. p. 66 The “Compton effect” did it. Physicists now accepted photons. Sure, in certain experiments light displayed its spread-out wave properties and in others its compact particle properties. As long as one knew under what conditions each property would be seen, the photon idea seemed less troublesome than finding another explanation for the Compton effect. Einstein, however, still “a man apart,” insisted a mystery remained, once saying: “Every Tom, Dick, and Harry thinks they know what the photon is, but they’re wrong.” p. 67 Langevin asked for a comment on de Broglie’s idea from the world’s most eminent physicist. Einstein replied that this young man has “lifted a corner of the veil that shrouds the Old One.” p. 77 In quantum theory there is no atom in addition to the wavefunction of the atom. This is so crucial that we say it again in other words: The atom’s wavefunction and the atom are the same thing; “the wavefunction of the atom” is a synonym for “the atom.” Accordingly, before a look collapses a widely spread-out wavefunction to the particular place where the atom is found, the atom did not exist there prior to the look. The look brought about the atom’s existence at that particular place — for everyone. p. 79 We should not leave this discussion without emphasizing that what we have said about the position of an object being created by observation applies to every other property. For example, an atomic nucleus is a tiny magnet with a north and a south pole. It can be in a superposition state with its north pole simultaneously pointing up and down. p. 80 Does Nature’s fundamental law, the Schrödinger equation, give only probability? Einstein felt that there must be an underlying deterministic explanation. “God does not play dice,” is his often-quoted remark. (Bohr told him not to tell God how to run the universe.) But randomness was not Einstein’s most serious problem with quantum mechanics. What disturbed Einstein and Schrödinger, and more people today, is quantum mechanics’ apparent denial of ordinary physical reality — or, maybe the same thing, the need to include the observer in the physical description — an intrusion of consciousness into the physical world. p. 87 Along with Bell, we suspect that something beyond ordinary physics awaits discovery. Not all physicists would agree. Many would like to dismiss the enigma, our “skeleton in the closet,” as merely a psychological problem, claiming that we just have to get used to the quantum strangeness. However, the existence of an enigma is not a physics question. It’s metaphysics in the original sense of that word. (Metaphysics is Aristotle’s work that followed his scientific text Physics. It treats more general philosophical issues.) Here nonphysicists with a general understanding of the experimental facts— facts about which there is no dispute — can have an opinion with validity matching that of physicists. p. 119 Your observation not only creates a current reality, it also creates the history appropriate to that reality. p. 119 Consider the tiniest possible peek. That could be bouncing a single photon off the cat through tiny holes in the box. With a single photon you can’t learn much. But if that photon were blocked, telling us that the cat was standing, and therefore alive, it would collapse the superposition state into the living state. Quantum theory tells us that any look, anything in fact that provides information, collapses the previously existing state. p. 120 All we know is that someplace on the scale between big molecules and humans there is this mysterious process of observation and collapse. Conceivably, it’s indeed at the last step, at awareness. p.139 Most physicists paid little attention to EPR, or to Bohr’s response. It did not matter whether or not quantum mechanics was complete; it worked. It never made a wrong prediction, and practical results abounded. Who cared if atoms lacked physical reality before being observed? Working physicists had no time for “merely philosophical” questions. Bell’s theorem has been called “the most profound discovery in science in the last half of the twentieth century.” It rubbed physics’ nose in the weirdness of quantum mechanics. As a result of Bell’s theorem and the experiments it stimulated, a once “purely philosophical” question has now been answered in the laboratory: There is a universal connectedness. Einstein’s “spooky interactions” do in fact exist. Any objects that have ever interacted continue to instantaneously influence each other. Events at the edge of the galaxy influence what happens at the edge of your garden. p. 140 The momentous result is what we now call “Bell’s theorem.” It allows the actual demonstration of aspects of our world that previously could be treated only as philosophical questions. p. 142 Bell wanted to understand what the quantum calculations he did really meant: “You can ride a bicycle without knowing how it works. . . . In the same way we [ordinarily] do theoretical physics. I want to find the set of instructions to say what we are really doing.” p. 143 All this is pretty abstract. Philosophers and mystics have talked of reality and separability (or its opposite, “universal connectedness”) for millennia. Quantum mechanics put those issues squarely in front of us. Bell’s theorem allows these ideas to be tested. p. 149 The experiments show that a single Quantum Enigma twin-state photon’s behavior is instantaneously connected to that of its twin. That connectedness can extend beyond the photon pair to macroscopic things. p. 150 Quantum theory has no boundary between the microscopic and the macroscopic. p. 153 Every interpretation of quantum mechanics involves consciousness. — Euan Squires p. 154 Classical physics, with its mechanical picture of the world, has been taken to deny almost all metaphysics. Quantum physics denies that denial: It hints at the existence of something beyond what we usually consider physics — beyond what we usually consider the “physical world.” But that’s the extent of it! Physics can certainly suggest directions for speculation. We should, however, be careful — in dealing with the mysteries of quantum mechanics, we walk the edge of a slippery slope. p. 155 The movie uses special effects to display quantum phenomena with macroscopic objects — for example, exaggerating the uncertainty of the position of a basketball. That’s legitimate and is understood as hyperbole. The movie’s allusion to mysteries in quantum mechanics being connected to the realm of consciousness is also valid. But then the movie blends over to “spiritual revelations” and to the implication of a quantum connection with the channeling of a 35,000-year-old Atlantis god named Ramtha and other such nonsense. p. 155 Quantum mechanics forces us to accept that the mechanistic Newtonian view of the world — and the intuitions fostered by it — are fundamentally flawed. The Copenhagen interpretation provides a sound logical way for physicists to ignore the quantum weirdness and get on with the usual business of physics. p. 176 Our own concern with the hard problem arises, of course, because physics has encountered consciousness in the quantum enigma, which physicists call the “measurement problem” — that is, where aspects of observation come close to those of conscious experience. In each case, something beyond the normal treatment of physics or psychology appears to be needed for a solution. And might those two somethings conceivably be the same something? p. 179 Consciousness and the quantum enigma are not just two mysteries; they are the two mysteries: the first, our physical demonstration of the quantum enigma, faces us with a fundamental mystery of the objective world “out there;” the second, conscious awareness, faces us with the fundamental mystery of the subjective, mental world “in here.” Quantum mechanics appears to connect the two. p. 196 Surprise! The expansion of the universe is not slowing — it’s accelerating. Not only is the mutual gravitational attraction of the galaxies canceled, but there is a repelling force in space that is greater than the gravitational attraction. With that force must come an energy. Since mass and energy are equivalent (E = mc2), this mysterious repulsive energy has a mass distributed in space. In fact, most of the universe is made up of this mysterious “dark energy.” The universe appears to be about 70% dark energy and 25% dark matter. The kind of stuff we, the planets, and the stars are made of appears to be a mere 5% of the universe. p. 196 Let us quote the quantum theorist Freeman Dyson, writing before the idea of dark energy arose: Chapter 17 Consciousness and the Quantum Cosmos 197 It would not be surprising if it should turn out that the origin and destiny of the energy in the universe cannot be completely understood in isolation from the phenomena of life and consciousness. . . . It is conceivable . . . that life may have a larger role to play than we have imagined. Life may have succeeded against all odds in molding the universe to its purposes. And the design of the inanimate universe may not be as detached from the potentialities of life and intelligence as scientists of the twentieth century have tended to suppose. p. 199 The Anthropic Principle: Only the lightest nuclei were created in the Big Bang. The heavier elements — carbon, oxygen, iron, and all the rest — were created inside stars, which formed much later. These elements are released into space whenever a heavy star exhausts its nuclear fuel, violently collapses, and then explodes as a supernova. Later-generation stars and their planets, including our solar system, gather up this debris. We are the remnants of exploded stars — we’re stardust. In addition to the fine-tuning of the Big Bang, another bit of luck seems involved in our stellar creation. Calculations had shown that the making of heavy elements in stars could not get even as far as the carbon nucleus (six protons and six neutrons). Cosmologist Fred Hoyle reasoned that, since carbon was indeed here, there had to be a way of making carbon. He realized that a then-unexpected state of the carbon nucleus at a certain very precise energy could allow the stellar production of the elements to continue to carbon, nitrogen, oxygen, and beyond. At Hoyle’s suggestion, that crucial nuclear state was looked for and found. There are other coincidences: if the strengths of the electromagnetic and gravitational forces were even slightly different, or if the strength of the weak nuclear force were slightly larger or slightly smaller, the universe would not have been hospitable to life. No known physics compels these things to work out just right. There are many other coincidences that we don’t mention. Does everything so improbably working out so perfectly require explanation? Not necessarily. If it didn’t just happen to work out this way, we wouldn’t be here to ask that question. Is that statement of explanation enough? Such “backward reasoning,” based on the fact that we and our world exist, is called the anthropic principle.